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1 Normalised Model Equations

The variables are normalised as follows:

Households

1. ct = Ct
Zt

2. cN,t =
CN,t

Zt(1+zN )t

3. cT,t = Ct
Zt(1+zT )t

4. cH,t =
CH,t

Zt(1+zH)t

5. cF,t =
CF,t

Zt(1+zF )t

6. λt = ΛtZt

7. kt = Kt
Zt

8. ngdpt = NGDPt
PtZt

9. b∗t = StBt
PtNGDPt

10. nxt = NXt
PtNGDPt

11. πt = Pt
Pt−1

12. πN,t =
PN,t
PN,t−1

13. πT,t =
PT,t
PT,t−1

14. πH,t =
PH,t
PH,t−1

15. πF,t =
PF,t
PF,t−1

16. πI,t =
PI,t
PI,t−1

17. πIT,t =
P IT,t
P IT,t−1

18. it = It
Zt(1+zI)t

19. vt = Vt(1 + zI)
t

Non-tradeable Firms

20. yN,t =
YN,t

Zt(1+zN )t

21. iN,t =
IN,t

Zt(1+zN )t

22. kN,t =
KN,t
Zt

23. rKN,t =
RKN,t
Pt

24. wN,t =
WN,t

PtZt

25. mcN,t = MCN,t

26. jN,t =
JN,t

(1+zI)tZt

27. qN,t = QN,t

Home-tradeable Firms

28. yH,t =
YH,t

Zt(1+zH)t

29. c∗H,t =
C∗
H,t

Zt(1+zH)t

30. iH,t =
IH,t

Zt(1+zH)t

31. kH,t =
KH,t
Zt

32. rKH,t =
RKH,t
Pt

33. wH,t =
WH,t

PtZt

34. mcH,t = MCH,t

35. πH,t =
PH,t
PH,t−1

36. jH,t =
JH,t

(1+zI)tZt

37. qH,t = QH,t

Commodity Firms

38. yX,t =
YX,t

Zt(1+zX)t

39. kX,t =
KX,t
Zt

40. rKX,t =
RKX,t
Pt

41. wX,t =
WX,t

PtZt

42. jX,t =
JX,t

(1+zI)tZt

43. qX,t = QX,t

Relative Prices

44. τI,t = TI,t(1 + zI)
t

45. τN,t = TN,t(1 + zN)t

46. τT,t = TT,t(1 + zT )t

47. τH,t = TH,t(1 + zH)t

48. τF,t = TF,t(1 + z∗)t

49. τF ∗,t = TF ∗,t(1 + z∗)t

50. τ IT,t = T IT,t(1 + zIT )t

51. τG,t = TG,t

52. τGT,t = TGT,t(1 + zGT )t

Foreign Economy

53. π∗t =
P ∗
t

P ∗
t−1

Miscellaneous

54. ∆st = St
St−1
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The following presents the normalised model equations:

Household optimisation:

0 =
ζtzt

ctzt − hct−1

− hEt
{
β

ζt+1

ct+1zt+1 − hct

}
− λt (1)

0 = −λt + Et

{
β
λt+1 (1 + rt)

zt+1πt+1

}
(2)

0 = −λt + Et

{
β
λt+1

(
1 + rFt

)
st+1

zt+1πt+1

}
(3)

0 = −qH,t + Et

{
β
λt+1

λtzt+1

[
rKH,t+1 + (1− δ)qH,t+1

]}
(4)

0 = −qN,t + Et

{
β
λt+1

λtzt+1

[
rKN,t+1 + (1− δ)qN,t+1

]}
(5)

0 = −qX,t + Et

{
β
λt+1

λtzt+1

[
rKX,t+1 + (1− δ)qX,t+1

]}
(6)

0 = −τI,t + qH,tvt

[
1−Υ

(
jH,tzt(1 + zI)

jH,t−1

)
−Υ′

(
jH,tzt(1 + zI)

jH,t−1

)
jH,tzt(1 + zI)

jH,t−1

]
(7)

+ Et

{
β
λt+1qH,t+1vt+1

λtzt+1(1 + zI)
Υ′
(
jH,t+1zt+1(1 + zI)

jH,t

)(
jH,t+1zt+1(1 + zI)

jH,t

)2
}

0 = −τI,t + qN,tvt

[
1−Υ

(
jN,tzt(1 + zI)

jN,t−1

)
−Υ′

(
jN,tzt(1 + zI)

jN,t−1

)
jN,tzt(1 + zI)

jN,t−1

]
(8)

+ Et

{
β
λt+1qN,t+1vt+1

λtzt+1(1 + zI)
Υ′
(
jN,t+1zt+1(1 + zI)

jN,t

)(
jN,t+1zt+1(1 + zI)

jN,t

)2
}

0 = −τI,t + qX,tvt

[
1−Υ

(
jX,tzt(1 + zI)

jX,t−1

)
−Υ′

(
jX,tzt(1 + zI)

jX,t−1

)
jX,tzt(1 + zI)

jX,t−1

]
(9)

+ Et

{
β
λt+1qX,t+1vt+1

λtzt+1(1 + zI)
Υ′
(
jX,t+1zt+1(1 + zI)

jX,t

)(
jX,t+1zt+1(1 + zI)

jX,t

)2
}

and

0 = −ζtξεLt (lt)
ν−ω lωH,t + λtwH,t (10)

0 = −ζtξεLt (lt)
ν−ω lωN,t + λtwN,t (11)

0 = −ζtξεLt (lt)
ν−ω lωX,t + λtwX,t (12)
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Capital accumulation:

0 = kH,t+1Et {zt+1} − (1− δ) kH,t − vt
[
1−Υ

(
jH,t
jH,t−1

zt(1 + zI)

)]
jH,t (13)

0 = kN,t+1Et {zt+1} − (1− δ) kN,t − vt
[
1−Υ

(
jN,t
jN,t−1

zt(1 + zI)

)]
jN,t (14)

0 = kX,t+1Et {zt+1} − (1− δ) kX,t − vt
[
1−Υ

(
jX,t
jX,t−1

zt(1 + zI)

)]
jX,t (15)

Price and inflation indices:

πt =
[
γN (πN,tτN,t−1(1 + zN))1−η + γT (πT,tτT,t−1(1 + zT ))1−η] 1

1−η (16)

πT,t = πγHH,tπ
γF
F,t (17)

πIt = πIT,t
γITπ

γIN
N,t (18)

πIT,t = π
γIH
H,tπ

γIF
F,t (19)

(20)

Consumer demand:

cN,t = γN (τN,t)
−η ct (21)

cT,t = γT (τT,t)
−η ct (22)

cH,t = γHγT (τH,t)
−1 (τT,t)

1−η ct (23)

cF,t = γFγT (τF,t)
−1 (τT,t)

1−η ct (24)

Investment demand:

iN,t = γIN

(
τN,t
τI,t

)−1

it (25)

iT,t = γIT

(
τ IT,t
τI,t

)−1

it (26)

iH,t = γIHγ
I
T

(
τH,t
τ IT,t

)−1(
τ IT,t
τI,t

)−1

it (27)

iF,t = γIFγ
I
T

(
τF,t
τ IT,t

)−1(
τ IT,t
τI,t

)−1

it (28)
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Production:

yX,t = atZ̃X,tk
αX
X,tl

µX
X,tL1−αX−µX (29)

yH,t = atZ̃H,tk
αH
H,tl

1−αH
H,t (30)

yN,t = atZ̃N,tk
αN
N,tl

1−αN
N,t (31)

Tradeable firms:

0 = kH,t −
αH

1− αH
wH,tlH,t
rKH,t

(32)

0 = mcH,t −
(

1

1− αH

)1−αH ( 1

αH

)αH επH,tw1−αH
H,t rKH,t

αH

τH,tZ̃H,t
(33)

0 =
πH,t
πH

(
πH,t
πH
− 1

)
+
θH − 1

ψH
− θH
ψH

mcH,t

− Et
{
β
λt+1

λt

yH,t+1

yH,t

τH,t+1

τH,t

πH,t+1

πH

[
πH,t+1

πH
− 1

]}
(34)

Non-tradeable firms:

0 = kN,t −
αN

1− αN
wN,tlN,t
rKN,t

(35)

0 = mcN,t −
(

1

1− αN

)1−αN ( 1

αN

)αN επN,tw1−αN
N,t rKN,t

αN

τN,tZ̃N,t
(36)

0 =
πN,t
πN

(
πN,t
πN
− 1

)
+
θN − 1

ψN
− θN
ψN

mcN,t

− Et
{
β
λt+1

λt

yN,t+1

yN,t

τN,t+1

τN,t

πN,t+1

πN

[
πN,t+1

πN
− 1

]}
(37)

Commodity firms:

0 = αX
τX,tyX,t
kX,t

− rKX,t (38)

0 = µX
τX,tyX,t
lX,t

− wX,t (39)
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Importing firms:

0 =
πF,t
πF

(
πF,t
πF
− 1

)
+
θF − 1

ψF
− θF
ψF

mcF,t

− Et
{
β
λt+1

λt

yF,t+1

yF,t

τF,t+1

τF,t

πF,t+1

πF

[
πF,t+1

πF
− 1

]}
(40)

mcF,t = ςεπF,t

(
τF ∗,t

τF,t

)
(41)

Law of one price:

0 = τX,t − κtτF ∗,t (42)

Relative Prices:

0 =
τN,t
τN,t−1

− πN,t(1 + zN)

πt
(43)

0 =
τT,t
τT,t−1

− πT,t(1 + zT )

πt
(44)

0 =
τ IT,t
τ IT,t−1

− πIT,t(1 + zIT )

πt
(45)

0 =
τH,t
τH,t−1

− πH,t(1 + zH)

πt
(46)

0 =
τF,t
τF,t−1

− πF,t(1 + z∗)

πt
(47)

0 =
τF ∗,t

τF ∗,t−1

− ∆stπ
∗
t (1 + z∗)

πt
(48)

0 =
τI,t
τI,t−1

− πI,t(1 + zI)

πt
(49)

(50)

Foreign sector:

c∗H,t = γ∗H

(
τH,t
τF ∗,t

)−η∗
Ỹ ∗t (51)
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Market clearing:

0 = yN,t − cN,t − iN,t −
ψN
2

(πN,t
π̄N
− 1
)2

yN,t (52)

0 = yH,t − cH,t − c∗H,t − iH,t −
ψH
2

(πH,t
π̄H
− 1
)2

yH,t (53)

0 = yF,t − cF,t − iF,t −
ψF
2

(πF,t
πF
− 1
)2

yF,t (54)

0 = it − jH,t − jN,t − jX,t (55)

0 = lt −
[
l1+ω
H,t + l1+ω

N,t + l1+ω
X,t

] 1
1+ω (56)

0 = ngdpt − τH,tyH,t − τN,tyN,t − τX,tyX,t (57)

0 = nxt − τH,t
c∗H,t
ngdpt

+ τF ∗,t

(
cF,t + iF,t
ngdpt

)
+ τX,t

yX,t
ngdpt

(58)

0 = b∗t −
b∗t−1(1 + r∗t−1)∆stngdpt−1

πtngdptzt
− nxt (59)

Interest rates and monetary policy:

1 + rFt = (1 + r∗t ) exp(−ψb (b∗t − b∗) + ψ̃b,t) (60)

1 + rt
1 + r

=

(
1 + rt−1

1 + r

)ρR [(πt
Π

)φπ ( ytzt
yt−1z̄

)φy](1−ρR)

exp(uR,t) (61)
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2 Data and Estimation

2.1 Data Sources

This section describes the data used to estimate the model.

Population: Quarterly gross domestic product in chain volume measure (ABS Catalogue

5206.0) divided by quarterly gross domestic product per capita also in chain volume

measure (ABS Catalogue 5206.0).

Real GDP per capita: Quarterly gross domestic product per capita in chain volume

measure (ABS Catalogue 5206.0).

Investment per Capita: Quarterly gross fixed capital formation in chain volume

measure (ABS Catalogue 5206.0) divided by population.

Consumption per capita: Quarterly all sectors final consumption expenditures (in-

cluding public sector) in chain volume measure (ABS Catalogue 5206.0) divided by

population.

Net exports-to-GDP: Net exports-to-GDP is computed as exports-to-GDP less imports-

to-GDP. Exports-to-GDP is quarterly exports in current price measure divided by quarterly

gross domestic product in current price measure. Imports-to-GDP is quarterly imports

in current price measure divided by quarterly gross domestic product in current price

measure (ABS Catalogue 5206.0).

Nominal interest rate: Cash rate (RBA Bulletin Table F1). The monthly series is

converted into quarterly frequency by arithmetic averaging.

Nominal exchange rate: Australian Trade-Weighted Index (RBA Bulletin Table F11).

CPI Inflation: Percentage change in the Consumer Price Index excluding interest and

tax (ABS Catalogue 6401.0).

Non-tradeable inflation: Percentage change in the Non-tradeables Price Index excluding

interest and tax (ABS Catalogue 6401.0).

Commodity prices: Quarterly Commodity Price Index (RBA Bulletin Table I2).

Hours worked: Quarterly Hours Worked Index (ABS Catalogue 5206.0).

Foreign output: Quarterly index of Australia’s major trading partners’ GDP, calculated

at purchasing power parity exchange rates (RBA).
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Foreign inflation: Foreign inflation is computed implicitly as Australian Trade-Weighted

Index (RBA Bulletin Table F11) divided by Australian real Trade-Weighted Index (RBA

Bulletin Table F15) and multiplied by trimmed-mean inflation (ABS Catalogue 6401.0).

Foreign interest rate: Foreign interest rate is computed as the average policy rate in the

Euro area, the United States, and Japan (RBA Bulletin Table F13). The monthly series

are converted into quarterly frequency by arithmetic averaging. German interest rate is

used before the introduction of the Euro (FRED Database series INTDSRDEM193N).

2.2 Estimation Procedure

The model is estimated and solved using the technique developed in Kulish & Pagan

(2017) for models with structural changes. Following Kulish & Rees (2017), I allow for the

structural break in steady-state commodity prices, κ, and in the variance of commodity

price shock, σk, to happen at possibly different dates in the sample, Tκ and Tσ. Hence,

for the data sample t = 1, 2, · · · , T , and assuming that Tκ < Tσ, three different regimes

occur:

1. First regime: For t = 1, 2, · · · , Tκ− 1, steady-state commodity prices are normalised

to 1. In the initial regime, the first-order approximation to the equilibrium conditions

around the steady state is a linear rational expectations system of equations that is

given by:

A0yt = C0 + A1yt−1 + IEtB0yt+1 +D0εt (62)

where the structural matrices A0, C0, A1, B0 and D0 correspond to the initial steady

state, yt is vector of state and jump variables and εt is a vector of exogenous iid

shocks. The solution, if it exists and is unique, will be a Vector Autoregression

(VAR) that takes the form:

yt = C +Qyt−1 +Gεt (63)

2. Second regime: For t = Tκ, · · · , Tσ − 1, steady-state commodity prices may take on

a different value, say κ∗. The structural form of the model then becomes:

A∗0yt = C∗0 + A∗1yt−1 + IEtB
∗
0yt+1 +D0εt (64)

where the superscript ∗ is associated with the matrices that correspond to the new

steady-state commodity price level. Note that the matrix D0 is unchanged as the

break in the variance of commodity prices hasn’t occurred yet. The solution, if it
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exists and is unique, will be a VAR that takes the form:

yt = C∗ +Q∗yt−1 +G∗εt (65)

3. Third regime: For t = Tσ, · · · , T , the variance of the commodity price shock σκ

changes. The structural form of the model then becomes:

A∗0yt = C∗0 + A∗1yt−1 + IEtB
∗
0yt+1 +D∗∗0 εt (66)

where the matrix D∗∗0 denotes the matrix corresponding to the new variance of

shock to commodity prices while other structural matrices are maintained as in the

second regime. The solution, if it exists and is unique, will be a VAR that takes the

form:

yt = C∗ +Q∗yt−1 +G∗∗εt (67)

Based on the three regimes, the time-varying reduced form is given by:

yt = Ct +Qtyt−1 +Gtεt (68)

Given a data sample, one can form an observable variables vector, yobst , that relates to

the variables in the model by:

yobst = Hyt + vt (69)

where vt is a vector of iid measurement errors with zero mean and covariance matrix V .

Together, the state equation, Equation (68), and the observation equation, Equation (69),

form a state-space model. Hence, the data sample’s likelihood function can be constructed

by using the Kalman filter as outlined in Kulish & Pagan (2017).

Most of the literature on DSGE models’ estimation employ Bayesian estimation

techniques which take into account prior probability distributions on the estimated

parameters. I adopt Bayesian methods to estimate the parameters (ϑ) as well as the

dates of structural changes (T). In this framework, the information in the data sample’s

likelihood function, L(Y |ϑ,T), updates the prior distribution on non-calibrated parameters

and dates of structural changes, p(ϑ,T), to generate a posterior distribution:

p(ϑ,T|Y ) = L(Y |ϑ,T)p(ϑ,T) (70)

The nonlinear mapping from the DSGE model to the likelihood function implies that

the analytical construction of the posterior distribution for the parameters is a complex
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task. As such, the Metropolis Hastings algorithm is used to simulate from the joint

posterior distribution of the parameters and the dates of the breaks. I sample 400,000

posterior draws, discarding the first 100,000 draws as burn-in.
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3 Alternative Output Gap Estimation Methods

3.1 Quadratic Detrending

One of the simplest methods to calculate potential output and the output gap is by

employing a quadratic trend which decomposes output into two uncorrelated components:

trend and cycle. This method assumes that potential output is well approximated by a

deterministic quadratic trend in relation to time and the output gap is a residual from the

trend line. Hence, potential output and output gap are obtained by estimating a linear

regression of the log of real GDP on a constant, time trend, and time trend squared:

yt = β0 + β1t+ β2t
2 + εt (71)

where yt is the log of real GDP, t is the time trend, and εt is the error term of the

regression. Potential output would then be given as:

y∗t = β̂0 + β̂1t+ β̂2t
2 (72)

where β̂0, β̂1 and β̂2 are the estimated coefficients of the linear regression. To estimate

the output gap, potential output is subtracted from the log of actual output:

xt = yt − y∗t = ε̂t (73)

which shows that the output gap is simply the residual of the estimated linear regres-

sion equation. It is noteworthy that the output gap measure obtained using quadratic

detrending has a zero mean over the sample period, as linear regression assumes that the

mean of estimated residual is zero. To estimate the output gap for Australia using the

quadratic detrending method, I use the logarithm of the seasonally adjusted quarterly

real GDP series over the period 1993:Q1-2017:Q1.

3.2 Hodrick-Prescott Filter

Developed by Hodrick & Prescott (1997), the Hodrick-Prescott (HP) filter is a simple and

widely used statistical method for estimating potential output and the output gap. In the

HP filter method, real GDP is represented as a sum of a trend component that varies

smoothly over time and a cyclical component, which captures short-run fluctuations:

yt = y∗t + xt (74)
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where yt is the log of real GDP, y∗t is potential output, and xt is the output gap. The HP

filter then finds the value of potential output that minimises the deviation of potential

output from actual output while imposing a restriction on the degree of variation in

potential output growth. This leads to the following dynamic optimisation problem:

min
{y∗t }Tt=1

{
T∑
t=1

(yt − y∗t )2 + λ
T−1∑
t=2

[(
y∗t+1 − y∗t

)
−
(
y∗t − y∗t−1

)]2}

The first term in the above expression is the square of potential output’s deviation from

actual output and the second term is the square of the one-period variation in the growth

of potential output. The exogenous parameter λ is a positive number that penalises the

variability of potential output and thus determines the extent of admissible changes in

potential output growth. In that sense, the higher(lower) the value of the parameter λ is,

the more(less) smoothed the potential output and more(less) volatile the output gap. To

estimate the output gap for Australia using the HP filter method, I use the logarithm of

the seasonally adjusted quarterly real GDP series over the period 1993:Q1-2017:Q1, with

the parameter λ set at 1600, which is standard in the literature for quarterly time series.

3.3 Beveridge-Nelson Decomposition

The Beveridge-Nelson (BN) decomposition, developed by Beveridge & Nelson (1981)

assumes that a nonstationary real GDP series can be decomposed into two components, a

permanent component and a transitory component:

yt = y∗t + xt (75)

where yt is the log of real GDP, y∗t is the permanent component (i.e. potential output),

and xt is the transitory component (i.e. output gap). The Beveridge-Nelson technique

assumes that real output is integrable of order 1 and its first difference, ∆yt, is integrable

of order 0. Hence, the permanent component follows a random walk with a drift:

y∗t = β + y∗t−1 + αεt (76)

where y∗t is a random walk, β is the drift, and αεt is an error term. Meanwhile, the cyclical

component is stationary:

xt = ϕ∗p(L)xt − ψ∗q (L)εt + (1− α)εt (77)
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where L is the lag operator, ϕ∗p(L) = ϕ1L+ϕ2L
2 + · · ·+ϕpL

p and ψ∗q (L) = ψ1L+ψ2L
2 +

· · ·+ ψqL
q. This implies that yt is an ARIMA(p,1,q) process and ∆yt is an ARMA(p,q)

process.

To implement the BN decomposition for Australia, I adopt the methodology developed

in Kamber et al. (2018) which allows for the imposition of a low signal-to-noise ratio.

Kamber et al. (2018) show that their proposed methodology for output gap estimation

results in a more intuitive output gap measure and is better at predicting inflation and

output growth than other methodologies of trend-cycle decomposition like detrending

and the HP filter. Hence, estimating the output gap for Australia using this methodology

would allow for a better comparison with the DSGE model-based output gap. I compute

the output gap by estimating an AR(12) forecasting model for the first difference of

log real GDP using the seasonally adjusted quarterly real GDP series over the period

1992:Q4-2017:Q11.

3.4 Production Function Approach

The production function approach assumes that output is a Cobb-Douglas aggregate of

the available technology and the input factors capital and labour:

Yt = AtK
α
t L

1−α
t (78)

where Yt is real GDP, At is total factor productivity, Kt is capital stock, and Lt is total

labour hours. The parameter α is capital’s share in output, calibrated at 0.4 to match

the share of capital from total income in Australia over the period 1993:Q1-2017:Q1.

The capital stock series is constructed from total investment using the perpetual

inventories method:

Kt = (1− δ)Kt−1 + It (79)

where, in each period, the capital stock is measured by augmenting the previous period’s

capital (net of depreciation) with the current period’s investment flow. In line with the

calibration of the DSGE model, the rate of capital depreciation δ is set at 0.005, while an

initial benchmark is computed as K1993:Q1 = I1993:Q1/(δ + gi) with gi being the average

investment growth rate over the period 1993:Q1-2017:Q1. Total labour hours are defined

as the product of the number of hours available in the labour force and the employment

rate:

Lt = LFtHt(1− Ut) (80)

1The BN decomposition is computed by modifying the MATLAB code made available by Kamber
et al. (2018).

14



where LFt is the total labour force, Ht is the number of hours worked per person, and

Ut is the unemployment rate. Finally, the available technology is measured as the Solow

residual from the Cobb-Douglas production function:

At =
Yt

Kα
t L

1−α
t

(81)

Measures of potential capital, potential labour, and potential total factor productivity

are needed in order to compute an estimate of potential output using the following

production function:

Y ∗t = A∗tK
α
t L
∗
t

1−α (82)

Hence, before computing potential output it is important to clearly define the potential

capital and labour as well as trend level of total factor productivity:

� Capital stock: The contribution of capital to potential output is measured as the

total usage of the economy’s existing capital stock. Thus, consistent with previous

literature, the capital stock series is not smoothed in the production function

approach as the capital stock itself is a measure of the economy’s overall capacity.

� Labour hours: The contribution of labour hours to potential output is defined as

L∗t = LF ∗t H
∗
t (1−NAIRUt) (83)

where LF ∗t is trend labour force and H∗t is the trend hours worked per person,

both obtained by mechanically detrending, using the HP filter, the labour force

and hours worked series, respectively. I calculate trend unemployment rate as

the non-accelerating inflation rate of unemployment, NAIRUt using the model

developed in Cusbert (2017).

� Total factor productivity: The potential level of total factor productivity, A∗t , is

computed by detrending the Solow residual using the HP filter.

Figure 1 plots the actual and potential input variables derived using the production

function approach.

3.5 Structural Vector Autoregression

Structural vector autoregressive (SVAR) models provide an approach to estimate potential

output based on macroeconomic modelling while allowing for endogenous variables to

interact and imposing feedback effects among them (Sims 1980). In SVAR models, the
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Figure 1: Actual and Potential Input Variables
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dynamics guiding the endogenous variables are determined by an identical number of

shocks. This allows shocks, such as supply and demand shocks, to be explicitly identified.

Based on the work of Blanchard & Quah (1989), the imposition of a suitable set of

long-run restrictions on the variance-covariance matrix in the estimation of a reduced-

form VAR would identify the permanent and transitory shocks that affect the variables.

Potential output within the SVAR model is then computed by adding up the deterministic

component to the permanent component of shocks.

I specify a trivariate vector autoregression system that includes the change in the

unemployment rate ∆ut, the log of real GDP yt, and the inflation rate πt over the period

1991:Q1-2017:Q1. The moving average representation of the system is given as:

 ∆ut

yt

πt

 =

 B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)


 ε∆u,t

εy,t

επ,t

+

 ψ∆u,t

ψy,t

ψπ,t

 (84)

where
[
ψ∆u,t ψy,t ψπ,t

]′
is the deterministic trend vector, ε∆u,t is the unemployment

shock, εy,t is the output shock, and επ,t is the inflation shock.

To retrieve the structural shocks, I impose a set of identifying restrictions on the

trivariate VAR system resulting in the following long-run representation: ∆ut

yt

πt

 =

 B11(1) B12(1) B13(1)

0 B22(1) B23(1)

0 0 B33(1)


 ε∆u,t

εy,t

επ,t

+

 ψ∆u,t

ψy,t

ψπ,t

 (85)

These restrictions imply that the unemployment shock affects long-run unemployment

only. Further, the output shock – which according to Blanchard & Quah (1989) represents

a productivity shock – affects long-run unemployment and long-run output. Meanwhile,
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the inflation shock affects long-run unemployment, output, and inflation. After the

identification of the three shocks, I compute potential output from the deterministic

component and the non-transitory component of shocks.
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4 Estimated Output Gap as Indicator of Inflation

The reduced-form relationship between real economic activity and inflation, known as the

Phillips curve (Phillips 1958), has been frequently used for forecasting inflation. As such,

the search for a proper specification of the Phillips curve is ongoing and the output gap

remains one of the key indicators of inflation considered by policy-making institutions

(Coenen et al. 2008). Here, I examine whether the alternative univariate and multivariate

output gap measures are useful predictors of inflation. I particularly focus on comparing

the predictive content for inflation of the output gap derived from the DSGE model to

that of alternative estimates.

4.1 Cross-Correlations

In order to examine the performance of the alternative output gap estimates in explaining

inflation, I compute the cross-correlation coefficients between the output gap and leads

and lags of inflation. The measure of inflation I use is the quarterly percentage change in

the trimmed mean measure of the consumer price index (CPI). As argued by Norman &

Richards (2010), the trimmed mean measure of CPI is a better measure than headline CPI

for Australia as it reduces the noise in price data. Figure 2 presents the cross-correlation

between leads and lags of inflation and the alternative measures of the output gap. The

output gap measures from the quadratic detrend, the HP filter, and the BN decomposition

are all negatively correlated with lagged inflation at all lags considered. The output gap

measures computed using the SVAR approach and the production function approach

reveal a negative correlation with lagged inflation at lags k = {−8,−7, · · · ,−5} and a

weak positive correlation with lagged inflation at lags k = {−2,−1}. Meanwhile, only

the DSGE model-based flexible-price output gap displays a positive correlation with

lagged inflation, with the correlation becoming stronger as the lags decrease. Hence, the

correlation pattern between inflation and the DSGE model-based output gap is different

from the correlation pattern between inflation and other measures of the output gaps.

The contemporaneous cross-correlation between inflation and output gap estimates

is negligible for most measures of the output gap except the SVAR measure where the

correlation is 0.11 and the DSGE model-based measure where the correlation peaks at

0.50. This suggests that the DSGE model-based output gap could provide a better guide

to the degree of spare capacity in the economy today than other measures of the output

gap. Finally, all output gap measures display positive correlation with lead inflation. The

positive correlation is the strongest for the DSGE mode-based output gap for the first

lead and for the SVAR output gap for all other leads k = {2, 3, · · · , 8}. As such, while

18



the DSGE model-based output gap could provide guidance on the economy’s current

performance relative to full capacity, alternative output gap measures may predict inflation

better.

Figure 2: Dynamic Cross-Correlations between Output Gaps (t) and Inflation (t+ k)
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4.2 Out-of-Sample Inflation Forecast

As an indicator of demand and supply activities, the output gap is often considered a

measure of inflationary pressures in the economy. As such, the information contained in

the output gap could improve the precision of inflation forecasts. In this section, I quantify

the extent to which the alternative output gap measures provide a means of improving

inflation forecasts, using a simulated out-of-sample methodology. The procedure employed

for forecast evaluation is similar to the one used by Stock & Watson (1999) for the U.S.,

Billmeier (2004) for European countries, and Coenen et al. (2008) for the Euro area. The

forecast evaluation depends on several factors that include, among others, the measure

of inflation considered, the model employed to construct the inflation forecasts, the
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benchmark model used for comparison, and the loss function used in forecast evaluation.

In this paper, I restrict my attention to Australian trimmed mean CPI measure and

consider the mean-squared forecast error (MSFE) for forecast evaluation.

The out-of-sample inflation forecast is obtained using bivariate models of inflation and

the output gap that are estimated using rolling sub-samples of 40 quarters each. More

formally, the general specification of the bivariate models is:

πht+h = a+ b(L)πt + c(L)xt + εht+h (86)

where L is the lag operator, b(L) and c(L) are finite polynomials of orders p and q

respectively, xt is the measure of the output gap, πt is the annualised quarterly inflation,

and πht+h is the annualised h-quarter percentage change in the trimmed mean CPI defined

as:

πht+h = 100

((
Pt+h
Pt

) 4
h

− 1

)
(87)

To provide a benchmark for comparison, I consider three alternative specifications.

The first specification assumes inflation follows a smooth random walk model as in Coenen

et al. (2008), where the forecast is computed as the average inflation rate during the

previous four quarters2:

πRWt+h = 100

(
Pt
Pt−4

− 1

)
(88)

The second specification I consider is a univariate autoregressive inflation forecasting

model based on the specification in equation (86) but omits the output gap:

πht+h = a′ + b′(L)πt + εht+h (89)

Given that it is always possible to improve on the univariate specification by adding more

regressors, I consider a third specification where the output gap in the bivariate model is

replaced by real output growth:

πht+h = a′′ + b′′(L)πt + c′′(L)gyt + εht+h (90)

where gyt is the quarterly annualised growth rate of real output. van Norden (1995)

2In the random walk specification, the inflation forecast is independent of the forecast horizon and
hence doesn’t change as the forecast horizon varies.
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explains that this specification uses a larger information set than an autoregressive

specification as it contains information on both inflation and output growth. Hence,

such a specification provides a stronger test for the usefulness of output gap in inflation

forecasting.

Using Ordinary Least Squares procedure, the forecasting models are estimated on

rolling sub-samples starting from the subsample 1993:Q1-2002:Q4, at forecast horizons

h = {1, 2, · · · , 8}. The number of lags are selected in a way to minimise the Akaike

Information Criterion applied on the full sample with a maximum of four lags specified

for each regressor. For each sub-sample, a forecast of inflation is obtained and the forecast

error is computed as:

εh,ft+h = πh,ft+1 − πht+h (91)

where πht+h is the realised inflation rate and πh,ft+1 is the model forecast of inflation. Then,

for F number of forecasts, the mean-squared forecast error is computed as:

MSFE =
1

F

(
F∑
f=1

εh,ft+h

)2

(92)

Overall, I compare nine models of inflation: the random walk model (RW), the

autoregressive model (AR), the output growth model (Growth), and six bivariate models.

The first, second and third bivariate models include univariate output gap estimates:

the quadratic detrended output gap, the HP filtered output gap, and the output gap

from the BN decomposition. The fourth and fifth bivariate models are specified in

terms of the output gaps estimated by the production function approach and the SVAR

methodology. Finally, the sixth bivariate model includes the Kalman-filtered DSGE model-

based estimate of the flexible-price output gap. The use of the one-sided Kalman-filtered

rather than the two-sided Kalman-smoothed estimate of the output gap ensures that

the DSGE model-based estimate is not at an informational advantage in the forecasting

exercise compared to other measures of the output gap.

Figure 3 summarises the forecast accuracy of each of the different models considered

relative to the random walk model. The results reveal that the bivariate models of

the output gap significantly improve the inflation forecast accuracy when compared to

the random walk model over all forecast horizons. In particular, the bivariate models

specified in terms of the SVAR, BN decomposition, production function approach, and the

DSGE model-based output gap estimates possess significantly more forecasting power for

inflation when compared with the random walk model. This result matches the findings

in Coenen et al. (2008) for the Euro area. When compared with the autoregressive model,
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the bivariate models specified in terms of the quadratic detrended output gap and the

HP filtered output gap reveal the lowest improvement in forecasting accuracy, with some

of these measures even performing worse than the autoregressive model in the long-term

forecast horizons. On the other hand, each of the bivariate models specified in terms of

the BN decomposition output gap, the production function approach, the SVAR output

gap, and the DSGE model-based output gap do improve over the autoregressive model of

inflation over all the forecast horizons. When considering the bivariate model specified in

terms of output growth, it is revealed that the output gap estimates from the univariate

models underperform in forecasting inflation relative to the output growth model over all

the forecast horizons. The bivariate model specified in terms of the DSGE model-based

output gap measure slightly improves over the output growth model only for the sixth,

seventh and eighth quarter horizons, but is outperformed by the output growth model

for all other horizons. The bivariate model which includes the SVAR measure of the

output gap improves over the output growth model over all the forecast horizons, with

the improvement becoming more significant for the long-term forecast horizons.

Figure 3: The MSFE of Alternative Models Relative to Random Walk
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To sum up, the comparison of the predictability of inflation across the different

output gap measures depends on the benchmark model chosen for comparison and the

forecast horizon specified. In general, the results reveal that there exists favourable
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Table 1: Analysis of Inflation Forecast Accuracy

MSFE MSFE/RW MSFE/AR MSFE/Growth
1 Quarter Horizon
Quadratic Detrend Output Gap 0.410 0.790 0.902 1.112
HP Filter Output Gap 0.446 0.858 0.980 1.208
BN Decomposition Output Gap 0.375 0.722 0.824 1.016
Production Function Output Gap 0.399 0.768 0.877 1.081
SVAR Output Gap 0.359 0.691 0.790 0.974
DSGE Output Gap 0.395 0.761 0.868 1.071
Random Walk 0.520 1.000 1.142 1.408
Autoregressive Model 0.455 0.875 1.000 1.233
Real Output Growth 0.369 0.710 0.811 1.000
2 Quarter Horizon
Quadratic Detrend Output Gap 0.324 0.817 0.888 1.159
HP Filter Output Gap 0.336 0.849 0.922 1.203
BN Decomposition Output Gap 0.281 0.709 0.771 1.005
Production Function Output Gap 0.253 0.639 0.694 0.905
SVAR Output Gap 0.258 0.652 0.709 0.925
DSGE Output Gap 0.317 0.800 0.870 1.134
Random Walk 0.396 1.000 1.087 1.417
Autoregressive Model 0.364 0.920 1.000 1.304
Real Output Growth 0.280 0.706 0.767 1.000
4 Quarter Horizon
Quadratic Detrend Output Gap 0.320 0.814 0.933 1.234
HP Filter Output Gap 0.323 0.821 0.941 1.245
BN Decomposition Output Gap 0.273 0.692 0.794 1.050
Production Function Output Gap 0.274 0.696 0.798 1.055
SVAR Output Gap 0.218 0.554 0.635 0.840
DSGE Output Gap 0.301 0.765 0.877 1.160
Random Walk 0.394 1.000 1.147 1.517
Autoregressive Model 0.343 0.872 1.000 1.322
Real Output Growth 0.260 0.659 0.756 1.000
8 Quarter Horizon
Quadratic Detrend Output Gap 0.321 0.685 0.954 1.094
HP Filter Output Gap 0.337 0.719 1.003 1.150
BN Decomposition Output Gap 0.292 0.624 0.870 0.997
Production Function Output Gap 0.335 0.714 0.996 1.142
SVAR Output Gap 0.154 0.328 0.457 0.524
DSGE Output Gap 0.283 0.603 0.841 0.964
Random Walk 0.468 1.000 1.394 1.598
Autoregressive Model 0.336 0.717 1.000 1.147
Real Output Growth 0.293 0.626 0.872 1.000
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evidence regarding the inflation forecasting power of the DSGE model-based output gap,

when compared to the random walk and the autoregressive models as well as to other

conventional univariate output gap measures. However, the DSGE model-based output

gap seems to be outperformed by the SVAR estimate of the output gap for all forecast

horizons. Further, the output growth model and the production function model perform

better than the DSGE model-based output gap for short-term horizons and share similar

forecast performance over the longer forecast horizons.
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Figure 4: The Four-Quarter Inflation Forecast of Alternative Models
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5 Additional Results

Figure 5: Data and One-Sided Predictions
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Figure 6: Posterior and Prior Distributions
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Figure 6 (Continued): Posterior and Prior Distributions
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