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1 Model Equations

1.1 Non-Stationary Equations
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τt = (1− ρτ )τ + ρττt−1 + (1− ρτ )γτb
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1.2 Stationary Equations

The normalised variables are as follows:
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1.3 Steady State
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1.4 Log-Linear Equations and Observation Equations

Tax rates, debt, foreign debt, the current account and trade balance are defined in terms

of deviations from their steady state values. For these variables we use the notation,

x̃t = xt−x. Remaining variables are expressed in log-deviations, that is x̂t = ln xt− ln x.

1.4.1 Structural Equations

0 = (zσ − hβ)(z − h)

󰀕
λ̂t +

1

1 + τ c
τ̃ ct

󰀖
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∆ŵobs
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2 Data Sources

This section describes the data used to estimate the model.

• Population: Quarterly gross domestic product in chain volume measure (ABS

Catalogue 5206.001) divided by quarterly gross domestic product per capita also

in chain volume measure (ABS Catalogue 5206.001).

• Real GDP per capita: Quarterly gross domestic product per capita in chain

volume measure (ABS Catalogue 5206.001). This series enters in first difference in

the estimation.

• Consumption per capita: Quarterly private consumption in chain volume mea-

sure (ABS Catalogue 5206.002) divided by population. This series enters in first

difference in the estimation with its sample mean adjusted to match the sample

mean of real output growth.

• Government spending-to-GDP ratio: Quarterly government consumption and

pubic gross fixed capital formation in current prices (ABS Catalogue 5206.003)

divided by quarterly gross domestic product in current prices (ABS Catalogue

5206.003). This series enters in log form in the estimation.

• Net exports-to-GDP ratio: Net exports-to-GDP is computed as exports-to-

GDP less imports-to-GDP. Exports-to-GDP is quarterly exports in current price

measure divided by quarterly gross domestic product in current prices. Imports

to-GDP is quarterly imports in current prices divided by quarterly gross domestic

product in current prices (ABS Catalogue 5206.003). The sample mean of this

series is removed prior to the estimation.

• Hourly wage: Compensation of employees (ABS Cat 5206.044) divided by the

hours worked index (ABS Cat 5206.001). The series is deflated by the consumption

deflator (ABS Cat 5206.005). This series enters in first difference with its sample

mean adjusted to equal the mean of output growth.

• Domestic Real interest rate: 90-day bank bill rate (RBA Bulletin Table F1).

This nominal interest rate is converted to a real rate using the trimmed mean

inflation series (RBA Bulletin Table G1). The monthly series is converted into

quarterly frequency by arithmetic averaging.
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• Foreign Real interest rate: 3-months U.S. Treasury bill rate (FRED Database).

This nominal interest rate is converted to a real rate using the U.S. core PCE

inflation series (FRED Database). The monthly series is converted into quarterly

frequency by arithmetic averaging.

• Government debt-to-GDP-ratio: Commonwealth government securities on is-

sue (Australian Office of Financial Management and RBA Bulletin Table E3)

divided by quarterly gross domestic product in current prices (ABS Catalogue

5206.003).

• Consumption tax revenues-to-GDP-ratio: The sum of sales tax revenues and

goods and services tax revenues in current prices (ABS Cat 5206.022) divided by

quarterly gross domestic product in current prices (ABS Catalogue 5206.003). The

mean of the series is adjusted for the subsample 1983-2000 to adjust for the break

resulting from the introduction of the goods and services tax in the year 2000.

• Labour income tax revenues-to-GDP ratio: Individual income tax revenues

in current prices (ABS Cat 5206.022) divided by quarterly gross domestic product

in current prices (ABS Catalogue 5206.003).

• Capital income tax revenues-to-GDP ratio: The sum of resident corporations’

income tax revenues and non-residents’ income tax revenues in current prices (ABS

Cat 5206.022) divided by quarterly gross domestic product in current prices (ABS

Catalogue 5206.003)
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Modelling Structural Break in Trend Growth

The model is estimated and solved using the technique developed in Kulish and Pagan

(2017) for models with structural changes. We allow for the structural break in steady-

state trend growth, z, and in the variance of shocks to happen at possibly different dates

in the sample, Tz and Tσ. Hence, for the data sample t = 1, 2, · · · , T , and assuming that

Tz < Tσ, three different regimes occur:

1. First regime: For t = 1, 2, · · · , Tz − 1, steady-state labour-augmenting technology

growth takes an initial value, z. In the initial regime, the first-order approximation

to the equilibrium conditions around the steady state is a linear rational expecta-

tions system of equations that is given by:

A0yt = C0 + A1yt−1 + IEtB0yt+1 +D0εt (105)

where the structural matrices A0, C0, A1, B0 and D0 correspond to the initial

steady state, yt is vector of state and jump variables and εt is a vector of exogenous

iid shocks. The solution, if it exists and is unique, will be a Vector Autoregression

(VAR) that takes the form:

yt = C +Qyt−1 +Gεt (106)

2. Second regime: For t = Tz, · · · , Tσ − 1, steady-state labour-augmenting technology

growth takes a different value, say z′. The structural form of the model then

becomes:

A∗
0yt = C∗

0 + A∗
1yt−1 + IEtB

∗
0yt+1 +D0εt (107)

where the superscript ∗ is associated with the matrices that correspond to the new

steady-state commodity price level. Note that the matrix D0 is unchanged as the

break in the variances of shocks hasn’t occurred yet. The solution, if it exists and

is unique, will be a VAR that takes the form:

yt = C∗ +Q∗yt−1 +G∗εt (108)

3. Third regime: For t = Tσ, · · · , T , the variances of shocks change. The structural

form of the model then becomes:

A∗
0yt = C∗

0 + A∗
1yt−1 + IEtB

∗
0yt+1 +D∗∗

0 εt (109)

10



where the matrix D∗∗
0 denotes the matrix corresponding to the new variances of

shocks while other structural matrices are maintained as in the second regime. The

solution, if it exists and is unique, will be a VAR that takes the form:

yt = C∗ +Q∗yt−1 +G∗∗εt (110)

Based on the three regimes, the time-varying reduced form is given by:

yt = Ct +Qtyt−1 +Gtεt (111)

Given a data sample, one can form an observable variables vector, yobst , that relates to

the variables in the model by:

yobst = Hyt + vt (112)

where vt is a vector of iid measurement errors with zero mean and covariance matrix V .

Together, the state equation, Equation (111), and the observation equation, Equation

(112), form a state-space model. Hence, the data sample’s likelihood function can be

constructed by using the Kalman filter as outlined in Kulish and Pagan (2017).
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3 Growth Accounting Calculations for Australia

To perform the growth accounting exercise, we assume Australia’s output per capita can

be modelled as a Cobb-Douglas aggregate of available technology and capital per capita:

yt = Atk
α
t (113)

where yt is output per capita, At is total factor productivity, and kt is capital per capita.

Hence, output per capita growth, gy, is given as:

gy = ga + αgk (114)

where ga is the contribution of total factor productivity to output per capita growth and

αgk is the contribution of capital per capita of output growth. The results of the growth

accounting calculations for Australia are given in Table 1.

Table 1: Growth Accounting Calculations for Australia

Period
Average GDP per
capita growth

Contribution of
capital per capita

Contribution of total
factor productivity

% % %
1990-2000 2.02 0.61 1.41
1990-2017 1.65 0.70 0.95
2000-2017 1.36 0.77 0.59
2010-2017 1.10 0.70 0.40

Below is a description of the data used in the growth accounting calculation:

• Population: Annual gross domestic product in chain volume measure (ABS Cat-

alogue 5204.0) divided by annual gross domestic product per capita also in chain

volume measure (ABS Catalogue 5204.0).

• Real GDP per capita: Gross domestic product using the production based ap-

proach in chain volume measure (ABS Catalogue 5204.0) divided by population.

• Capital per capita: End-year net capital stock in chain volume measure (ABS

catalogue 5204.0) divided by population.

• Capital share in production function: The ratio of gross operating surplus in

all sectors to income. Income is computed as the sum of compensation of employees

(ABS Catalogue 5204.0) and gross operating surplus in all sectors (ABS Catalogue

5204.0).

12



4 Unobserved Components Estimates

We set up linear and non-linear unobserved components trend-cycle decomposition mod-

els for the quarterly level of GDP and allow for a break in output trend to happen at

any date as well as a break in the variance of the shock to the trend and variance of the

shock to the cycle to occur on the same date.

4.1 Linear Unobserved Components Model

The linear unobserved components trend-cycle decomposition model is given by:

yt = τt + ct (115)

τt = z1(t < Tz) + (z +∆z)1(t ≥ Tz) + τt−1 + 󰂃τt (116)

ct = ρ1ct−1 + ρ2ct−2 + 󰂃ct (117)

where yt is the logarithm of Australia’s real GDP per capita which is decomposed into a

trend component τt and a cyclical component ct. The trend component τt is specified as

a random walk with a drift and we allow for a break in the drift to happen at the date

Tz. 1(A) is an indicator function that takes the value 1 if the condition A is true and

a value of 0 otherwise. As such, the mean growth rate of the trend equals z before the

break date Tz, and z′ = z +∆z on and after the break date. The cyclical component ct

is modelled as a zero-mean stationary AR(2) process. We assume that the innovations

󰂃τt and 󰂃ct are independently normal:

󰀣
󰂃τt

󰂃ct

󰀤
= N

󰀣
0,

󰀥
µσ2

τ1(t < Tσ) + σ2
τ1(t ≥ Tσ) 0

0 µσ2
c1(t < Tσ) + σ2

c1(t ≥ Tσ)

󰀦󰀤

We allow for a break in the variances of the innovations 󰂃τt and 󰂃ct to occur at the same

date Tσ. As such, the variances of the shocks to the trend and the cycle are respectively

µσ2
τ and µσ2

c before the break date Tσ, and σ2
τ and σ2

c on and after the break date.

The linear unobserved components trend-cycle decomposition model can be written
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is state space form:

yt =
󰁫
1 1 0

󰁬
xt (118)

xt =

󰀵

󰀹󰀷
z

0

0

󰀶

󰀺󰀸1(t < Tz) +

󰀵

󰀹󰀷
z′

0

0

󰀶

󰀺󰀸1(t ≥ Tz) +

󰀵

󰀹󰀷
1 0 0

0 ρ1 ρ2

0 1 0

󰀶

󰀺󰀸 xt−1 +

󰀵

󰀹󰀷
1 0

0 1

0 0

󰀶

󰀺󰀸

󰀥
󰂃τt

󰂃ct

󰀦

(119)

where xt =
󰁫
τt ct ct−1

󰁬′
.

To estimate the model, we calibrate the growth rate in the initial regime at 0.0055 as

in the small open economy model and use a Bayesian estimation technique to estimate

the remaining parameters (ϑ) and the break dates (T). We set the priors to either be

in consistence with the literature or to be uninformative. Uniform prior with support -

0.0045 to 0.015 is set for the mean growth of the trend parameter z′ . Normal distribution

with mean 0.9 and standard deviation 1 is imposed on the autoregressive parameter ρ1.

For the autoregressive parameter ρ2, we impose a normal prior with mean 0 and standard

deviation 1. The priors on the standard deviations of shocks, στ and σc are set as uniform

priors with support 0 and 0.2. Further, a uniform prior [0, 3] is imposed on the variance

scale parameter µ. Finally, flat priors are imposed for the break date Tz and Tσ and

the initial regime is restricted to be at least 60 quarters long. The prior and posterior

distributions of the parameters from estimating the model at level and at first-difference

are listed in Tables 2 and 3, respectively.

Table 2: Prior and Posterior Distribution of the Parameters and Break Dates from Level
Estimation

Prior distribution Posterior distribution

Parameter Dist. Mean S.d. Mean Mode 5% 95%
Parameters

z′ Uniform [−0.0045, 0.015] 0.0025 0.0029 0.0014 0.0036
ρ1 Normal 0.9 1 0.8344 0.8907 0.1365 1.4520
ρ2 Normal 0 1 -0.2197 0.0017 -0.7982 0.4072
στ Uniform [0, 0.2] 0.0074 0.0079 0.0031 0.0094
σc Uniform [0, 0.2] 0.0026 0.0004 0.0002 0.0076
µ Uniform [0, 3] 1.9941 1.8537 1.5998 2.4486
Tz Flat [1997:Q4, 2015:Q2] 2006:Q3 2008:Q1 2002:Q2 2008:Q4
Tσ Flat [1997:Q4, 2015:Q2] 2002:Q1 2004:Q2 1998:Q2 2005:Q2
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Table 3: Prior and Posterior Distribution of the Parameters and Break Dates from First-
Difference Estimation

Prior distribution Posterior distribution

Parameter Dist. Mean S.d. Mean Mode 5% 95%
Parameters

z′ Uniform [−0.0045, 0.015] 0.0025 0.0030 0.0014 0.0036
ρ1 Normal 0.9 1 0.8237 0.9620 0.1286 1.4446
ρ2 Normal 0 1 -0.2154 0.0000 -0.8041 0.4214
στ Uniform [0, 0.2] 0.0074 0.0001 0.0029 0.0096
σc Uniform [0, 0.2] 0.0026 0.0078 0.0002 0.0076
µ Uniform [0, 3] 2.0051 1.8420 1.6041 2.4713
Tz Flat [1997:Q4, 2015:Q2] 2006:Q3 2008:Q1 2002:Q2 2008:Q4
Tσ Flat [1997:Q4, 2015:Q2] 2002:Q1 2004:Q2 1998:Q2 2005:Q2

4.2 Non-linear Unobserved Components Model

The non-linear unobserved components model is set up as a Friedman’s Plucking model

as in Kim and Nelson (1999). Here, the trend-cycle decomposition is given by:

yt = τt + ct (120)

τt = z1(t < Tz) + (z +∆z)1(t ≥ Tz) + τt−1 + 󰂃τt (121)

ct = ρ1ct−1 + ρ2ct−2 + πSt + 󰂃ct (122)

πSt = πSt, π ∕= 0 (123)

where πSt is an asymmetric, discrete, shock which is dependent upon an unobserved

variable St. We assume that St evolves according to a first-order Markov-switching

process as in Hamilton (1989):

Pr[St = 1|St−1 = 1] = p (124)

Pr[St = 0|St−1 = 0] = q (125)

As in the linear model, the trend component τt is specified as a random walk with a drift

and we allow for a break in the drift to happen at the date Tz.

The non-linear unobserved components trend-cycle decomposition model can be written
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is state space form:

yt =
󰁫
1 1 0

󰁬
xt (126)

xt =
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z
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0
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z′
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0

󰀶

󰀺󰀸1(t ≥ Tz) +
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󰀹󰀷
1 0 0

0 ρ1 ρ2

0 1 0

󰀶

󰀺󰀸 xt−1 +

󰀵

󰀹󰀷
1 0

0 1

0 0

󰀶

󰀺󰀸

󰀥
󰂃τt

󰂃ct

󰀦

(127)

where xt =
󰁫
τt ct ct−1

󰁬′
.

To estimate the non-linear model, we calibrate the growth rate in the initial regime at

0.0055 as in the small open economy model and use a Bayesian estimation technique to

estimate the remaining parameters (ϑ) and the break dates (T). In estimation, the Kim

(1994) filter is used which combines the Kalman filter with Hamilton (1989) filter for

Markov-switching models. The prior and posterior distributions of the parameters from

estimating the model at level are listed in Table 4.

Table 4: Prior and Posterior Distribution of the Parameters and Break Dates from Level
Estimation

Prior distribution Posterior distribution

Parameter Dist. Mean S.d. Mean Mode 5% 95%
Parameters

z′ Uniform [−0.0045, 0.015] 0.0025 0.0029 0.0015 0.0035
ρ1 Normal 0.9 1 1.0420 0.5306 0.2979 1.5729
ρ2 Normal 0 1 -0.3338 0.0004 -0.7660 0.1852
στ Uniform [0, 0.2] 0.0072 0.0079 0.0057 0.0092
σc Uniform [0, 0.2] 0.0004 0.0028 0.0003 0.0061
µ Uniform [0, 3] 2.0993 1.9003 1.6438 2.6442
π Uniform [−0.05, 0.05] 0.0015 -0.0015 -0.0041 0.0063
p Beta 0.05 0.15 0.0504 0.0000 0.0026 0.1446
q Beta 0.25 0.1 0.2605 0.2241 0.1196 0.4275
Tz Flat [1997:Q4, 2015:Q2] 2006:Q2 2007:Q2 2001:Q3 2008:Q3
Tσ Flat [1997:Q4, 2015:Q2] 2002:Q1 2004:Q1 1998:Q1 2008:Q1
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5 Additional Figures

Figure 1: Observable Variables Used in Estimation
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Figure 2: Prior and Posterior Distributions
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